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1. Introduction 

Traditional research has proven that the performance of routing protocols in a Mobile Ad-hoc 
Network (MANET) is strongly dependent on the desired outcome(s) and on the operating 
network environment.  In fact, for any given routing protocol, the performance is heavily 
dependent upon the situation.  Consequently, the exact same protocol that performs optimally in 
a high mobility scenario might operate below satisfactory standards in a low mobility situation or 
vice-versa.  In a similar sense, all routing protocols are limited to operating within the protocol’s 
tolerable conditions.  Therefore, to attain optimal routing performance in a dynamic network 
environment, the routing protocol itself should be dynamic in order to adapt to perform optimally 
for the network metrics and requirements at any particular instance of time.  However, for this 
approach to work as desired, details must be known about the performance of each component of 
each routing protocol under a variety of likely network conditions and scenarios.   

2. Background 

One solution to this new area of research has become known as Component-based Routing 
(CBR).  However, CBR is not a newly design single standalone protocol; but instead, a 
collection of basic component modules from existing routing protocols fused together to produce 
a unique optimal on-demand protocol for any network or scenario.  This technique is achievable 
because nearly all routing protocols perform the same core and/or auxiliary operations.  Core 
functions of a routing protocol may include route discovery, route selection, route formation, 
data forwarding, route maintenance, and routing metrics.  Auxiliary functions of a routing 
protocol may include neighbor discovery, neighbor maintenance, hierarchical structure, 
multicast, and security.  Consequently, a mesh of modules of components from different routing 
protocols can be assembled to produce a new unique fully functional routing protocol.  To 
illustrate this point of interchangeability, consider the core routing protocol function of data 
forwarding, which exists for all routing protocols.  Some data forwarding modules will maximize 
reliability, while other modules will ensure energy efficiency.  The goal of CBR is to consider 
the user requirements and network environment, and select the proper modules to compose the 
most suitable on-demand routing protocol.  However, in order to know which modules should be 
used, an advanced understanding of the impacts, advantages, and disadvantages of each module 
are necessary.   

Research of this nature contributes not only to the development of CBR, but also to the general 
sphere-space of MANET and routing knowledge.  Such a detailed study of these routing 
protocols may yield phenomena not yet discovered or explored by previous researchers.  
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Through analyzing the performance of each module instead of the performance of overall the 
protocol, a more in-depth and information-rich set of data should be acquired, in comparison to 
research results obtained in similar studies using the more traditional approaches.  The full 
benefits of CBR research are still undefined; however, since CBR employs such a novel research 
approach, researchers are confident that this process will produce some interesting and unique 
results. 

Recently, CBR techniques were used to evaluate the performance of the Dynamic Source 
Routing (DSR) protocol.  CBR simulation analysis of DSR was performed using an “Analytical 
Software Tool” designed by collaborating researchers at the University of Maryland, College 
Park.  The simulation was considered a great success in analyzing the performance of the DSR 
component modules and overall routing system.  Each core and auxiliary routing component was 
analyzed and results were acquired for each.  However, emulation results have not yet been 
obtained to validate the simulation findings.  In the near future, emulation results will be 
obtained using the Mobile Ad-hoc Network Emulator (MANE).  If the emulation results match 
the simulation results, the simulation results will be considered valid, which would in turn 
validate the software analytical tool.  Validating the software analytical tool provides several 
advantages.  These benefits include providing a much less cumbersome testing platform than 
MANE for evaluating future routing component modules and systems.   

Currently, research efforts are focused on evaluating the performance of the Optimized Link 
State Routing (OLSRv2) protocol and its component modules.  However, this task is not trivial 
with many obstacles and challenges that must be overcome.  Therefore, this project employs a 
team of collaborators from several academic and industrial institutions with each providing 
specific contributions necessary to achieve the desired goals and performance of CBR.   

In order to test the performance of the routing components for OLSR, the routing protocol itself 
had to be deconstructed into its core and auxiliary functions and components.  However, to do 
this, each class of components that form a MANET routing protocol had to be identified and 
appropriately defined.  Despite the fact that not every routing protocol contains components from 
each class, every protocol is composed of elements identified during this process.  The 
dependencies of classes of components were also investigated and considered.  Once the classes 
of routing components were identified and defined, the performance of each the defined 
component modules of a particular protocol could be investigated.   

The data acquired includes component module performance and overall routing performance.  
Component performance focuses primarily on the performance of a component as a standalone 
module.  The overall routing performance focuses on the performance of a group of cooperating 
components which make up a routing protocol.  The evaluation of each component has two parts: 
(a) identifying relevant variables and (b) investigating the effect of each of these relevant 
parameters.   
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Through a careful comparison of the component performance and overall routing system 
performance, inferences can be made about the relationship of each component to the 
performance of the overall system.  Using this knowledge, designers can prioritize the overall 
systematic weight of each component.  While some components may affect the overall 
performance greatly, others might not have such an influential effect on the overall routing 
system.   

Once the performance evaluation has been performed, the system will be deployed.  However, 
several issues arise from the deployment of CBR in itself.  One potential problem is component 
module incompatibilities within a network that would prevent or disrupt data flow.  Another 
issue is security.  Security add-ons may affect the performance drastically depending on the 
scheme employed due to increase overhead and resource allocation.  Other deployment questions 
including component module update intervals and network convergence time also exists. 

3. Experiment 

OLSRv2 operates as a table driven, proactive protocol developed for MANETs.  In OLSRv2, 
each router selects a set of its neighbors as “Multi-point Relays” (MPRs).  The usage of MPRs 
reduces the number of flooded messages, thus reducing network traffic (overhead) and 
increasing network performance.  In OLSRv2, a MPR of a router must be selected from a node’s 
willing one-hop symmetric neighbors.  OLSRv2 uses two types of messages, Topology Control 
(TC) and Hello.  These messages are disseminated through the network, and nodes use the 
information within these messages to maintain neighbor information and network topology.  
Messages generated in OLSRv2 employ User Datagram Protocol (UDP) at the Transport layer of 
the Open System Interconnection (OSI) model.  In a MANET, each node behaves as a peer-to-
peer (P2P) router that operates as both a client and server.  But unlike in a pure P2P network, in 
OLSRv2, only nodes selected as MPRs have the authority to forward data.   

To evaluate the OLSRv2 protocol for CBR, a client-server architecture was designed that will be 
used to test the performance of the component modules and overall routing system.  The 
contributions made by myself with the assistance of others included researching, designing, and 
debugging this client-server architecture, which will be implemented to investigate the 
performance of OLSRv2.  The client-server program is a distributed application architecture that 
divides the workload between service requesters (clients) and service providers (servers).  
Servers are usually high performance hosts that share resources with clients.  Servers should 
always be available, waiting in a listen state for any service request from a client.  A client is not 
required to share its resources with the server; however, the responsibility is on the client to 
initiate communication.   
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The client-server architecture developed assumes that each server can meet the needs of one-to-
many clients.  Even though OLSRv2 uses UDP, the architecture that was designed is also 
capable of operating in Transport Control Protocol (TCP) mode.  The client-server application 
was designed for maximum performance flexibility and minimal structural ambiguity.  As a 
consequence, this architecture followed a three class Unified Modeling Language (UML) model.  
The largest of these three classes was an abstract class called node.  The node class had two 
generalized sub-classes, client and server.  The node class contained attributes and behaviors 
common to both the client and server classes.  Through the generalization transactions, the client 
and server classes inherit all operations and attributes of the node class.  For this reason, node is 
purely an abstract class.  The client and server classes were connected through an association 
transaction.  Finally, operations and attributes were assigned to the appropriate classes.  
However, the implementations of the operations of the classes were not defined immediately.  
Before coding the implementations of the UML model, a C++ application was created.   

This C++ client-server application was used as working skeleton of the UML model, which 
needed to be implemented.  When researching how to create the client-server application, the 
fact that the usage of programming sockets would be necessary was immediately evident.  
Socket functions allow application programmers to access and control the transport OSI layer.  
Through the usage of socket functions, a programmer assigns ports, IP addresses, address 
families, and much more.  Once a socket has been created, network communication is possible. 

Several functions are necessary in the creation, management, and destruction of a network 
socket.  Even though both clients and servers use sockets, they do not use them the same way.  A 
server uses the following operation: WSAStartup(), socket(), bind(), listen(), accept(), recv() / 
recvfrom(), send() / sendto(), close(), and WSACleanup().  However, a client uses 
WSAStartup(), socket(), connect(), send() / sento(), recv() / recvfrom(), close(), and 
WSACleanup().  Although many functions are common, others are not.  Only servers need 
bind(), accept(), and listen().  Likewise, only clients need connect().  Since clients and servers 
perform different roles, they rely on different resources to operate.  The common functions were 
placed in the abstract node class of the UML model.  However, the other functions unique to 
either a client or server were placed in the appropriate class in the UML representation. 

In order for the client-server application to work, the server program had to be run first.  This 
makes perfect sense, because a client cannot request a service from a service provider if the 
provider does not exist.  When the server program runs, its behavior depends on the operating 
parameters.  In TCP, the program runs and waits in the accept() state.  This is due to the fact that 
TCP is a connection-oriented service; therefore, the connection must be established and 
approved prior to data transfer with a client.  However, in UDP, the server runs and waits in the 
recvfrom() state.  Since UDP is a connectionless service, the server is waiting and ready to 
receive messages from potential clients.  At this point, the server is idle.  Clients are run to 
request service from the server.  In TCP, the server accepts the connection, and then receives the 
service request.  But, in UDP, the server simply receives the service request from the client.  
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Once the server has received a request, the server performs some desired task(s) and sends 
information back to the client.  The client then receives the response message from the server 
with the information requested by the client.  If the client has more requests, then it sends them 
to the server.  Otherwise, the client application closes.  However, after handling the requests of 
all the requesting clients, the server goes back into an idle accept or receive-from state depending 
on the transport protocol.  The server program does not close unless initiated by the user; 
however, in the near future, a wait-time timeout will be implemented to conserve resources.   

4. Results 

Client-server applications were constructed using three different programming Integrated 
Development Environments (IDEs), which included Microsoft Visual Studio 2008, KDevelop, 
and IBM/Telelogic Rational Rhapsody.  Client-server applications were developed for both 
Windows and Linux.  Initially, KDevelop and Microsoft Visual Studio 2008 were used to create 
the application using a conventional C++ programming approach.  After the client-server 
application had been compiled and debugged using these IDEs, the code was implemented in 
IBM Rational Rhapsody employing UML.  The generated C++ code from KDevelop and Visual 
Studio was used to create an object-oriented model diagram (OOMD).  To bridge to gap between 
C++ programming and UML modeling, researchers participated in a tutorial based on 
Telelogic’s Rhapsody UML Tutorial (version 2.1).  The fundamentals acquired during the UML 
tutorials were used to construct the OOMD.  Using these techniques, flexible client-server 
architecture was successfully constructed for testing OLSRv2 for CBR.   

The client-server architecture designed is tremendously adaptable and permits the user(s) to 
specify any number of parameters related to information exchange.  A flexible client-server 
architecture is essential, because conventional studies have shown that the performance of a 
routing protocol in a MANET is firmly dependent on the network environment.  Therefore, to 
accomplish the best performance in a dynamic network atmosphere, the routing procedure itself 
should be dynamic.  Consequently, this obliges the implementation of a flexible client-server 
architecture.  Since the network constantly changes, the client-server needs constantly change.  A 
flexible client-server architecture ensures maximum compatible between client-server 
information exchanges.   
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5. Conclusions 

The client-server application produced will be used to test the performance of the component 
modules and overall routing system of OLSRv2.  The results of the performance test will be used 
to implement CBR more effectively.  With an enhanced knowledge of OLSRv2 and its modules 
performance, advantages, and disadvantages in particular scenarios and operating conditions, the 
decision making process of which class component modules to use in CBR can be improved.  
Improvements in class component module selection should lead to improved routing efficiency 
for dynamic networks.  With newly acquired data, researchers might be able to exploit properties 
that were previously uninvestigated.  At worst, this research will only widen the area of related 
research knowledge, questions, phenomena, and interests.   
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